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Bird's direct simulation Monte Carlo method for the Boltzmann equation is 
considered. The limit (as the number of particles tends to infinity) of the ran- 
dom empirical measures associated with the Bird algorithm is shown to be a 
deterministic measure-valued function satisfying an equation close (in a certain 
sense) to the Boltzmann equation. A Markov jump process is introduced, which 
is related to Bird's collision simulation procedure via a random time transfor- 
mation. Convergence is established for the Markov process and the random 
time transformation. These results, together with some general properties con- 
cerning the convergence of random measures, make it possible to characterize 
the limiting behavior of the Bird algorithm. 

KEY WORDS: Boltzmann equation; Bird's direct simulation Monte Carlo 
method; stochastic numerical algorithm; convergence of random measures; 
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1. I N T R O D U C T I O N  

Stochastic simulation schemes play an important role in the numerical 
treatment of the Boltzmann equation. (1~176 Therefore theoretical 
results concerning the convergence of these simulation procedures are of 
considerable interest. Recently a convergence proof for Nanbu's simulation 
method has been published ~2'3) and the convergence of a procedure based 
on stochastic differential equations has been established. C19'23) 

The first and best-known simulation procedure for the Boltzmann equa- 
tion is Bird's (5'6) "direct simulation Monte Carlo method." This scheme is 
the main one used in engineering problems. However, the question of its 
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convergence remains open. The purpose of the present paper is to fill this 
gap. 

We are concerned with the initial boundary value problem 

& f( t ,  x, v)+ (v, Vx)f( t ,  x, v)= J( f ) ( t ,  x, v) (1.1) 

t >1 to, x E G, v ~ 0~ 3, with the right-hand side 

J(f)( t ,  x, v)= ;~, dw f~2 de q(v, w, e)[f( t ,  x, v*) f ( t ,  x, w*) 

-- f ( t ,  x, v ) f ( t ,  x, w)] (1.2) 

where G is a bounded domain in the three-dimensional Euclidean space ~3 
V x denotes the vector of the partial derivatives with respect to x, de denotes 
the uniform surface measure on the unit sphere 5 2, and dw denotes the 
Lebesgue measure. The function q is called the collision kernel. 

Furthermore, v* and w* are the postcollision velocities related to the 
precollision velocities v and w and the collision parameter e via the 
formulas 

v * = v + e ( e ,  w - v )  
(1.3) 

w* = w + e(e, v - w )  

which are consequences of the conservation of momentum and energy. 
An initial condition 

f ( to ,  X ,v )=fo (x , v ) ,  ( x , v ) e G |  3 (1.4) 

and deterministic and energy-conserving boundary conditions on OG| R 3 
are assumed (e.g., specular reflection as considered in Babovsky and 
Illner(3~). The initial value fo is supposed to be normalized in such a way 
that 

fc f~ 3 fo(x, v) dv dx = 1 (1.5) 

We refer to Cercignani (7'8) or Lebowitz and Montroll  (18) for more 
details concerning the Boltzmann equation. 

The paper is organized as follows. In Section 2, we describe the Bird 
algorithm. In Section 3,, we prove some results concerning the convergence 
of random measures, which are necessary for the investigation of the Bird 
algorithm. 
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Section 4 contains the main result. The limit (as the number of par- 
ticles tends to infinity) of the random empirical measures associated with 
the Bird algorithm is shown to be a deterministic measure-valued function 
satisfying an equation close (in a certain sense) to the Boltzmann equation. 

Some comments on the results and related problems are given in 
Section 5. 

In this paper, the following notations are used. The symbols ( , )  and 
I I denote the scalar product and the norm, respectively, in the Euclidean 
space. The basic probability measure and the corresponding mathematical 
expectation are denoted by Prob( ) and E, respectively. The symbol �82 
denotes the indicator function of some set A. Finally, the sign ~ is used to 
denote convergence as the index n = 1, 2,... tends to infinity, if no other 
indication is given. Further notations will be introduced at the beginning 
of the sections where they are mainly used. 

2. T H E  B I R D  A L G O R I T H M  

The Bird algorithm (16'21) defines the time evolution of a random 
particle system 

( x i ( t ) , v i ( t ) ) ~ G |  3, i = l , . . . , n  (2.1) 

t ~> to, where n is the number of particles. The evolution of the system 
depends on a time discretization 

(tk), k = 0, 1 .... 

where t k + 1 = tk + A t for some A t > 0. 
At the time to, the system 

(xi( to) ,  v,( to)) ,  i =  1,..., n 

is sampled in accordance with the initial condition (1.4) of the Boltzmann 
equation. 

Given the state of the system at some time t~, 

(x i ( tk) ,  vi(t~)),  i =  1 ..... n 

k = 0, 1,..., the simulation offthe free flow of the particles and the simulation 
of their collisions on the time interval 

(tk, tk+l]  

are separated. First, the free flow is simulated disregarding the possible 
collisions. Then, the collisions are simulated neglecting the free flow. 
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The free flow simulation is done by means of the transformation 

O~,(x,v)=(Xs(X,V), V,(x,v)), s>~O (2.2) 

which describes the behavior of a particle starting at the time So = 0 in the 
point (x, v). This transformation depends on the domain G and the corre- 
sponding boundary conditions used in the formulation of the Boltzmann 
equation. Let (s,,), m = 1, 2,..., be the moments at which the particle inter- 
acts with the boundary 0G. Then, the function X~(x, v) is piecewise linear 
in s, 

f2 X , ( x , v ) = x +  Vu(x,v) du (2.3) 

and the function V~(x, v) is piecewise constant in s, 

V,m+l(x, v)= gs(X,~+l(x, v), V~m(X, V)) (2.4) 

m = 0, 1,.... The transformation 7 ~ describes the interaction of the particle 
with the boundary, e.g., specular reflection. ~3) We suppose that energy is 
conserved, i.e., 

[V,(x ,v) l=lvl ,  s>~O (2.5) 

The system resulting from the free flow simulation on the time interval 
(tk, tk+ 1] is 

(xl k), v} kl) = q~t(xi(tk), Vi(tk)), i= 1 ..... n (2.6) 

The system (2.6) is the starting point for the collision simulation on the 
time interval (tk, tk+l].  This procedure depends on a division of the 
position space G into a finite number of disjunct cells 

Gt, l=l, . . . ,Ic 

It is assumed that 

g l>0 ,  l =  1,..., lc 

where gl denotes the Lebesgue measure of the cell G t. In each cell, 
collisions of the particles are simulated neglecting their exact positions. 
Moreover, the positions of the particles do not change, and there is no 
interaction between different cells. 

We consider a fixed cell G l and describe Bird's collision simulation 
procedure by means of a continuous-time process 

z(t), t >~ tk 
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with the state space (G| n, which we call Bird's collision process. In 
fact, this process depends on n, l, and k. We omit these indices whenever 
it (as we hope) does not lead to misunderstanding. 

The initial value of the process is defined in accordance with (2.6), 

z(t~) = ((x~ k~, v}k)), i=  1,..., n) (2.7) 

Let n~ denote the number of particles of the system (2.7) which are in the 
cell G~. 

In the case nt < 2, the evolution in the cell Gt is trivial in the sense that 
no collisions take place. Thus, we define 

z ( t )=z( tk ) ,  t ~ t k  (2.8) 

]In the case nt ~> 2, we introduce a Markov chain 

~r m = 0, l .... 

with the state space (G|  N3) ~, the initial state 

~c(O) = z(t~) (2.9) 

and the following transition rule. 
Given the state ~c(m) = ((xi, vi), i =  1,..., n), first, the indices i and j of 

the particles due to take part in a collision are generated according to the 
probabilities 

where 

const �82 �82 Q(v,, vj) (2.10) 

Q(v, w) = fs2 q(v, w, e) de (2.11) 

and const is an appropriate normalization factor. 
Then, an element e ES 2 is generated in correspondence with the 

probability density 

q(vi, vj, e)/Q(vi, v i) (2.12) 

Finally, the postcollision velocities v* and v* are calculated according 
to (1.3). 

The state K(rn + 1) is obtained from K(m) by replacing v i and vj by v* 
and v*, respectively. 

Furthermore, a time counter is used, advancing the time by 

Jr (m)  = [ n -  l(nt - 1)(nil2) g71Q(vi,  vj)-] - ~ (2.13) 
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when the mth collision took place. Here, i and j are the indices of the 
particles taking part in the mth collision, and vi and vj are the precollision 
velocities. 

Let z(m), m = 0, 1 ..... be the sequence of random moments generated 
by (2.13), 

r(0) = tk (2.14) 
z ( m ) = ~ ( m - 1 ) + A ~ ( m ) ,  r e = l ,  2 .... 

Then, the process z(t)  is defined as 

z(t)  = z(r(m)),  t e [v(m), z(m + 1)) 
(2.15) 

z(z(m))  = ~c(m), m = O, 1 .... 

The collision simulation is performed by generating the processes z (t~ 
in all cells G~ while the corresponding time counters remain less than t k + 1. 
The resulting particle system is 

(xi(t), v i ( t ) )=  ~ �82 ~)) zl')(t) (2.16) 
l--1 

i= l , . . . , n ,  t ~ [ t k ,  t~+l],  where zl t~ denotes the ith component of the 
process z (l). 

The system 

(xi(tk+l), t~i(tk+ 1)), i =  1 ..... n 

is the starting point for the algorithm on the next time interval. 
It should be mentioned that the time step At as well as the partition 

into ceils (Gt) may depend on the time index k. However, we decided not 
to introduce further indices. 

The factor n -1 enters formula (2.13) as compared with the corre- 
sponding expression in Illner and Neunzert ~16) and Ploss, (2~) since we 
assume the normalization condition (1.5). The factor ( n t - 1 ) n ~  instead of 
n 2 is not essential for the limiting behavior, but it is technically more 
convenient for the proof. 

The processes z(t)(t) have been introduced without restricting the posi- 
tions of the particles to the cells G~ in order to avoid a random dimension 
of the state space. 

3. AUXIL IARY RESULTS 

In this section, we prove some results concerning the convergence of 
random measures. We refer to Hennequin and Tortra, ~15) Chapter 25, for 
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basic facts related to the convergence of random variables with values in 
metric spaces, and to Billingsley (4) for the theory of weak convergence of 
measures. In the proofs, we use several ideas from Skorokhod (22) and 
Smirnov. (23) 

Let J g = J g ( Z )  be the space of finite measures on the space 
Z =  G |  R 3 equipped with the Borel a-algebra. Some of the results are 
valid also for more general metric spaces Z. For  any measurable bounded 
function cp and any # e J/g, we denote 

(~0, ~> = fz  q,(z) ~,(dz) 

Let Cb = Cb(Z) be the space of bounded continuous functions on Z 
with the norm 

I1~oll ~ = sup Iq~(z)[, (p E Cb 
z E Z  

Definition 3.1. A sequence of measures (#n) is said to converge 
weakly to a measure # if 

for any (p e Cb. 
Let C L =  Cz(Z) be the space of bounded and Lipschitz-continuous 

functions on Z with the norm 

I[(prl= sup ([~o(z)[-4 [rp(~-~o(z')[~ 

Then, a metric on ~ is defined as 

Pc(#, 2 ) =  sup I(~o, # )  - ((p, 2)[ (3.1) 
I1(o[I ~< i 

p, 2E Jg. The metric (3.1) is equivalent to the weak convergence. (m 
Let, subsequently, #n and # denote random variables with values in 

~ ' .  Let Pn and P be the corresponding probability measures on Jg. 

Def in i t ion 3.2. 
distribution if 

The sequence (#,) is said to converge to p in 

Pn ~ P weakly 

Def in i t ion 3.3. 
probability if 

The sequence (#~) is said to converge to # in 

PL(Pn, ~) ~ 0 in probability 
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As in the finite-dimensional case, the convergence in probability 
implies the convergence in distribution. Furthermore,  since Pc is bounded, 
the convergence in probability is equivalent to the convergence in the 
mean, 

EpL(U., ~) --* 0 

For  any measurable transformation T of the space Z into a metric 
space Z ' ,  let D ( T )  denote the set of discontinuity points of T. In particular, 
T may be a measurable real-valued function on Z. Furthermore,  for any 
2 s Jr let 2*T -1 denote the measure on Z '  defined as 

(~*T-1)(A) = 2 ( T - I ( A ) )  (3.2) 

for any measurable set A ~ Z ' .  
First we generalize the following result to the case of random 

measures. 

Theorem 3.1 (Billingsley, (4) Theorem 5.2(iii)). Suppose p . ,  # to be 
deterministic and #,  ~ #. Let q0 be a measurable bounded function on Z 
such that 

Theorem 3.2. 

Then, 

~(D(q~))-- 0 

Then 

Suppose # , - - ,  # in distribution. 
Let ~o be a measurable bounded function on Z such that 

E~(D(q~)) = 0 (3.3) 

(~o, #~) ~ (~o, # )  in distribution 

Proof. We consider the function 

F(2 ) = exp( i t (  q), 2 ) )  

on Jg,  where i is the imaginary unit number, and t e ~. 
It  follows from Theorem 3.1 that 

D(F)  ~ {2: 2(D(cp)) > 0} 
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Actually, if 2(D(~o)) = 0 and 2~ ~ 2, then 

(q~, 2 . )  ~ (q~, 2 )  and F(2.) -~ F(2) 

Consequently, 

P(D(F)) ~< e({,~: X(D(~o)) > 0}) = Prob(#(D(~p)) > 0) = 0 

because of (3.3). Applying again Theorem 3.1, we obtain 

<F, P .> ~ <F, P )  

Thus, the characteristic functions of the random variables ((p, # , )  
converge to the characteristic function of <(p, p) ,  and the assertion of the 
theorem follows. | 

Now we find a sufficient condition for the convergence in probability 
of random measures. 

Lemma 3.3. Suppose (~p ,# , )~ (~p ,# )  in distribution, V~PeCb. 
Then 

sup E#,,(iz] > R)  - - e ~  ~ ' 0 
n 

Proof. Since the random variables (q~,/~.) are bounded, it follows 
that the measures m. defined as 

m.(A) = E#.(A) for any measurable set A c Z 

converge weakly to the measure m = E#. Consequently, the sequence (mn) 
is relatively compact, and the assertion is a consequence of the Prokhorov 
theorem. (4) | 

Theorem 3.4. 
Then 

Proof. 

Suppose (q~,/~.) ~ ((p, # )  in probability, V~oe Cb. 

#. --* p in probability 

fzl <~ R 

t z ] e ( R , R + l )  

rz[ >~R+ 1 

Consider the function 

t 1, z~(z)--- 1 + R - I z l ,  

1.0, 

(3.4) 
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where R > 0, and a function ~o ~ Cr such that Ilq~lJ ~< 1. Then, 

I(~o, ~ -  ~)1 ~< I (~0ZR, ~n -- ~)1 + ~.(tzl > R) + ~(Izl > R) 

and 

pL(#.,#)~< sup I(~,n.-u)l+n.(Izl>R)+~(Izl>R) (3.5) 
q)~ DR 

where DR = {q~;~R: q~e CL, II~pll ~< 1}. 
Since D R is compact, there exists a finite e-set {q~ie Cb} for any E>0.  

Consequently, for ~o e De,  we obtain 

t 
i 

and 

sup I < ~ o , ~ n - ~ ) > l < 2 ~ + ~  I<~o~,~.-~51 
q ~  DR i 

From (3.5) and (3.6), it follows that 

(3.6) 

i 

and 

lim sup Epc(1,tn, kt) ~< 2e + sup E/~.(Izl > R) + E~(lzl > R) 
n ~ o o  n 

for arbitrary e > 0. Consequently, the assertion follows from Lemma 3.3. 

Theorems 3.2 and 3.4 imply the following result. 

Corol lary 3.5. Let # be deterministic. Then, the following condi- 
tions are equivalent: 

(i) /~, - , /z  in probability. 

(ii) # ,  -~ # in distribution. 

(iii) (~o, # , ) ~  (r # )  in probability for any measurable bounded 
function r such that #(D(~o))= 0. 

(iv) ( tp, #,  ) ~ (~0, # ) in distribution, Vcp e C b.  

The next theorem deals with the convergence of restrictions of random 
measures. Consider a subset Zx o Z .  Let 2~ denote the restriction of a 
measure 2 ~ Jg to Z1. 
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Theorem 3.6. Let # be deterministic and such that 

#(8Z1) = 0 (3.7) 

where 8Z1 is the boundary of the set Z1. 
If #n --* # in probability, then #n, 1 - -+  #1 in probability. 

Proof. Consider ~01ECb(Z~), and define a function (p(l) on Z, 
which equals ~01 on Z1 and zero on Z\Z1. Since D(q~(1))cOZ1 and 
( (p l , # , , 1 )= (cp (1 ) ,#n ) ,  the assertion is an immediate consequence of 
Corollary 3.5 and (3.7). | 

The following theorem establishes the convergence of transformations 
of random measures (cf. Billingsley, (4) Theorem 5.1, concerning the deter- 
ministic case). Consider a transformation T of the space Z into a space Z'. 

Theorem 3.7. Let # be deterministic and such that 

p(D(r)) -- 0 (3.8) 

If #n --* # in probability, then #* T l ~ # * T -  ~ in probability. 

Proof. Consider a bounded continuous function ~ on Z' ,  and define 
a function ~ r on Z such that 

~ ( z )  = r  z ~ Z 

Since D(~r)cD(T)  and < ~ , # * T  ~ > = < @ r , # , > ,  the assertion 
follows immediately from Corollary 3.5 and (3.8). | 

We finish this section with some technical lemmas. 

Lemma 3.8. Let T be a transformation of the space Z into itself 
such that 

I T(z)l ~< c Izl 

for any z e Z and some constant C. 
Suppose 

sup E(lzf p, t~.) < oo 
n 

Then, 

for some p > 0  

sup E(lzl p, l t * T  - z  ) < oo 
n 
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Substitution of the variables in the integral ensures that 

<lzl p, #*T '-> = <lT(z)l p, ,Un> ~< &<lzl  ~, #.>  

and the assertion follows. | 

L e m m a  3.9. Suppose #, ~ # in probability, and 

supE([zlP,#n)=C<oc for some p > 0  
n 

Then, 

E < I z l P , # ) ~ C  

ProoL Consider the function ZR defined in (3.4). 
Izb p ZR(Z) is bounded and Lipschitz-continuous; consequently, 

E<Iz] p Z~(z),/~.> ~ E<Iz[ p, ~.> ~ C 

Furthermore, 

for any R > 0 

and, therefore, 

E(lz[ p ZR(z), # )  <~ C 

The assertion follows immediately. | 

The function 

and 

[ta, Oe) such that 

~ . ( t )  --,  t 

Define random measures 

v.( t )=U.(a.( t ) )  

E sup pc(/~(s), #(t)) ~ 0, Vt > t a (3.10) 
s E [ t - - c ~ , t + 6 ]  

Consider a sequence of random transformations on of the time interval 

in probability, Vt >~ ta (3.1 1 ) 

E sup pL(#,(t), #(t)) ~ O, Vtb>~ ta (3.9) 
t e  [ta, tb] 

L e m m a  3.10.  
a time index t~ [ta, oe). Suppose that 

Consider random measures/~,(t),/~(t), depending on 
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Then, 

Proof. 

Ep~(vo(t), #(t))  -~ o, 

Consider the set 

Vt >~ t.  

B~ = { sup  
s e [ t - b , t + & ]  

A~={pL(v,(t),#(t))>e} forsome t>>.t a and e > 0  

Then, for any 6 > 0, 

Prob(A~) = Prob(A~ c~ {] a,(t) - t] > ,~ } ) + Prob(A~ c~ { lan(t ) - t[ ~< c~ } ) 

~< Prob(lan(t) - tl > 3) + Prob( sup pL(#,(s), #(t)) > e) 
s~ [ t - -6 ,  t +  &] 

= $1 + S= 

The term St tends to zero as n --, oo for any fixed 3, because of (3.11). The 
term $2 remains to be estimated. Consider the set 

pA#o(s), #(~)) + pL(#(s), #(t)) > 8} 

Then, 

sup 
s~[t 6, t + & ]  

$2 ~< Prob(B~) 

~< Prob( sup pL(#(S), #(t)) > e/2) 
s~[t--,5, t+6] 

+ Prob( sup PL(#,(S), #(S)) > e/2) 
sE[t--6, t+6] 

The first term on the right-hand side of the above inequality can be made 
arbitrarily small by an appropriate choice of 3, because of (3.10). For a 
fixed 3, the second term tends to zero because of (3.9). Consequently, the 
assertion of the lemma follows. | 

4. T H E  C O N V E R G E N C E  R E S U L T  

Let v(")(t), t ~> to, denote the empirical measures associated with Bird's 
particle system (2.1), i.e., 

(qh v(m(t)) =n i ~ ~o(xi(t), vi(t)) (4.1) 
i = 1  

for any measurable bounded function (p on the space Z =  G | ~ .  

822/'66/'3-4-22 
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In order to construct the measure-valued function P(t), t >/to, that  will 
turn out to be the limit (as the number of particles n tends to infinity) of 
the empirical measures (4.1), we introduce some notations. 

Let 2k(t), t ~> tk, k = 0, 1,..., be measure-valued functions such that  

and 

2k(tk) = )~k l(tk)* ~b~, 1, k = 1, 2,.. (4.2) 

)~o(to)=P*q~L 1 for some P o e J g  (4.3) 

where the transformation q~ is defined in (2.2)-(2.5), and the asterisk 
denotes the operation defined in (3.2). 

Let 2k, t(t), l =  1 ..... lc, denote the restrictions of the measures 2k(t) to 
the spaces Z I = G I @ R  3. Suppose that  the functions 2k, l(t) satisfy the 
equations 

d 

= fatf~3fa, f~3[f~2deg[lq(v,w,e) 

x [q0(x, v + e(e, w - v)) - (p(x, v)] 1 2k, z(t, dx, dr) 2kd(t, dy, dw) 

(4.4) 

where the function q) is an arbitrary element of the space Cz(Gt| N3). 

Theorem 4.1 (Convergence of the Bird algorithm). Let the 
following assumptions be fulfilled. 

A1. Suppose that  there exist solutions 2k(t), 2~,t(t), t >/t~, k = 0, 1 ..... 
I = 1,..., Ic, of the system of equations (4.2)-(4.4) such that  

/ .  

sup ~ lzlE 2k(t, dz) < oo, VT> tk (4.5) 
t e  [ t k ,  T ]  " 

A2. Suppose that  the functions ilk, k = 0, 1,..., and the domains Gt, 
l =  1 ..... lc, are such that  

flk(tk)(Gt| ~3) > 0 (4.6) 

and 

2k(tk)(~?G, | R 3) = 0 (4.7) 
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A3. Suppose that the collision kernel q satisfies the conditions 

q(v, w, e) = q(w, v, e), Vv, w ~ ~3, 

;~2q(v, w,e) de<~ Qm~ < v~ 

f Iq(v ,w,e) -q(v ' ,w ,e) lde<<.C[v-v ' I ,  
52 

e ~ 5 ;  

VI), 14,, ~ [~3 

VV, idr, W ~ ~ 3  

1025 

(4.8) 

(4.9) 

(4.10) 

P(to) = Po 

Theorem 4.1 is a consequence of the following convergence results 
concerning the two parts of the Bird algorithm. 

Theorem 4.2 (Convergence of the free flow simulation). Let v~ '~ 
denote the empirical measure associated with the particle system (2.6). 

Let the assumption A1 of Theorem 4.1 be fulfilled. 

and 

P(t)=2k(t) ,  t6( tk ,  tk+l], k =  0, 1,... 

for any t ~> to, where the measure-valued function P(t), t/> to, is defined via 
the relations 

sup E(Jzl 2, Cn)(t)) < Go (4.15) 
n 

and 

EPL(r Po) --' 0 (4.12) 

and 
sup E(  Izt 2, v~,~(to) ) < oo (4.13) 

n 

where the measure Po is the same as in (4.3). 
Then, 

Epc(r P(t)) ~ 0 (4.14) 

f52q(v,w,e) de>>.Q~in>O , Vv, w e ~  3 (4.11) 

for some constants Q . . . .  C ,  and Qmin. 
A4. Suppose that the initial value v~n)(to) of the Bird algorithm 

satisfies the conditions 
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and 

Suppose that the functions 2k, k = 0, 1 ..... are such that 

2k(tk)(~?G | ~3) = 0 (4.16) 

Suppose that 

EpL(v~")( 6), P(6))  ~ 0 (4.17) 

for some k = 0, 1,.... 
Then, 

and 

sup E(Iz[ 2, v(n)(tk)) < oo (4.18) 
n 

EpL(V~ ~, 2k(tk)) ~ 0 (4.19) 

sup E(Izl 2, v~n)) < o0 (4.20) 
k 

n 

T h e o r e m  4.3. (Convergence of the collision simulation). Let 
~n)(t), t ~> 6 ,  denote the empirical measures associated with Bird's collision 
process z(t) defined in (2.7)-(2.15). Let #l")(t) denote the restriction of the 
measure/~(n)(t) to the space G~| R 3. 

Let the assumptions A1-A3 of Theorem 4.1 be fulfilled. 
Suppose that 

and 

for some k = 0, 1,.... 
Then 

~pL(ul"~(t,),  s  --, 0 (4.21) 

sup E(Iz l  2, ~n>(tk)) < O0 (4.22) 
n 

and 

EpL(U~")(t), &,;( t ))  -~ o 

supE(Izl2,#~')(t))<oo, Vt>~tk 
n 

Proof of Theorem 4.1. It follows from (4.12), (4.13), and the defini- 
tion of the function P that the assertions (4.14) and (4.15) are fulfilled for 
t =  to. 
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Let (4.14) and (4.15) hold for t = tk and some k =  0, 1,.... We show 
that then (4.14) and (4.15) are fulfilled for any t~ (t~, tk+~]. 

It follows from (2.16) that 

vl")(t)--l~l"'(t), Vte( tk ,  tk+j], l=l , . . . , l  o (4.23) 

Furthermore, (2.7) implies that 

p(")(tk) = v~ ") (4.24) 

Assumption (4.16) follows from (4.7), and Theorem 4.2 together with 
(4.24) ensure that 

and 

Epc(l~n)(tk), 2k(tk)) ~ 0 (4.25) 

sup E<lzl 2, #("~(tk)) < o9 (4.26) 
�9 n 

Assumption (4.21) follows from (4.25), (4.7), and Theorem3.6. 
Assumption (4.22) follows immediately from (4.26). Thus, by virtue of 
Theorem 4.3 and (4.23), we obtain 

and 

EpL(V~")(t), 2k, z(t)) ~ 0 

sup E(Izl  2, v}n)(t)) < 
11 

for any t s  (tk, tk+l]  and l =  1 ..... lc. 
It can be shown easily that 

pL(V(n)(t), 2k(t)) <~ ~ pL(V~m(t), )o~,,(t)) 
l ~ l  

(4.27) 

(4.28) 

Thus, assertion (4.14) follows from (4.27) and the definition of P. Further- 
more, assertion (4.15) follows immediately from (4.28). | 

Proof o[ Theorem 4.2. It follows from (2.6) and (3.2) that 

v~ ) = Cn~(tk)* qs~ I 

Furthermore, 

&(tk)  = e( tk)* ~ L  1 
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according to (4.2) and the definition of P. The transformation q~A, defined 
in (2.2)-(2.5) is discontinuous in (x, v) iff q~ t ( x ,  v)e (?G| N3. Hence, (4.19) 
follows from (4.17) and Theorem 3.7, if 

P ( t k ) ( ~ t ~ ( a G  | R3)) = 0 

This is ensured by assumption (4.16). 
The transformation ~ t  satisfies the inequality 

I ~ ( x ,  v)l ~ (1 +At)(Ixl + Ivl) (4.29) 

Consequently, (4.18) and (4.29) imply (4.20), according to Lemma 3.8. | 

In order to prove Theorem 4.3, we introduce a Markov jump process 
related to Bird's collision process, and establish convergence for this 
process. Then, we show that the Bird process converges to the same limit. 
For this purpose, we use a random time transformation that connects the 
Bird process and the Markov process. 

We consider a continuous-time Markov jump process (cf., e.g., 
Feller, ~ Chapter 10) 

zM(t),  t >~ tk 

with the state space Z ~. Let the infinitesimal generator of the process be of 
the form 

~r = rt-1 E ~ deEF(z(") + ~(i'/)(z(~), e)) - F(z("))] 
i < j "JS2 

x g y l � 8 2  �82 q(vi, vj, e) (4.30) 

where z(n) e Z  ~, with the components zl~)= (Xz, vi), i =  1,..., n, F is an 
arbitrary bounded measurable function on Z ~, and ~u'J)(z~n), e)~ Z ", with 
the components 

f (0 ,  0), m ~ i , j  

[~(i' J)(z(~), e)]m = ~(0,  e(e, v j--  vi)), m = i 

[, (0, e(e, vi -- vj)), m = j 

m -- 1,..., n. The initial value of the process is 

zM(tk)  = z( tk)  (4.31) 

where z( tk)  is defined in (2.7). 
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Theorem 4.4. Let gM(t), t>>-tk, denote the empirical measures 
associated with the process zM(t). Let /~ff(t) denote the restriction of the 
measure pM(t) to the space Gt |  R 3. 

Let the assumptions A1 and A2 of Theorem 4.1 be fulfilled. Suppose 
that the collision kernel q satisfies (4.8)-(4.10). Suppose that 

and 

for some k = 0, 1 ..... 
Then, 

Ep~(~,y(t~), '~k,,(tk)) --' o (4.32) 

sup E(lz]  2, #ff( tk))  < Go (4.33) 
n 

M t E sup PL(#, ( ) ,  ;%.,(t))--* O, VT>~ tk 
t~  [tk, T]  

The process zM(t) is closely related to Bird's collision process defined 
in (2.7)-(2.15). Their initial values as well as their behavior in the case 
n t < 2 are identical. In the case nt>~ 2, the process zM(t) can be described 
on the basis of the Markov chain •(m) defined in (2.9)-(2.12). 

Let rM(m), m = 0, 1 ..... be a sequence of random moments 

rM(0)  = tk 

rM(m)  = rM(m -- 1 ) + d~M(rn), m =  1, 2,... 
(4.34) 

where the random variables ArM(m), m =  1, 2 ..... are independent and 
exponentially distributed with the parameters 

n -1 ~ �82 �82 g/1Q(v, ,  v i) (4.35) 
i < j  

which depend on the state ~ c ( m - 1 ) =  ((xi, vi), i =  1 ..... n) of the Markov 
chain. Then, the process zM(t) can be represented in the form 

zM(t) =zM(rM(m)), t s  [rM(m), rM(m + 1)) 

zM(rM(rn)) = K(m), m = O, 1 .... 
(4.36) 

Consequently, one can introduce a random transformation a of the 
time interval [tk, oo) such that 

z(t)=zM(a(t)) ,  t>>-tk (4.37) 
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In the case nl < 2, we define 

a( t )  = t, t >>, tk 

In the case nt/> 2, relation (4.37) is fulfilled if 

or(t) 6 [zM(m), z~t(m + 1)) (4.38) 

for t e  [z(m), z(rn+ 1)), m = 0 ,  1 ..... This follows from (2.15) and (4.36). Let 
a be the continuous and piecewise linear function satisfying (4.38) and 

a u k )  = tk (4.39) 

T h e o r e m  4.5. Let the assumptions A1 and A2 of Theorem 4.1 be 
fulfilled. Suppose that the collision kernel q satisfies (4.8), (4.9), and (4.11). 
Suppose that #M satisfies (4.32). 
Then, 

a(t) -* t in probability, Vt >~ tk 

Now we are in the position to prove Theorem 4.3. 

Proof of Theorem 4.3. Since 

#(t~) = #M(t~) 

according to (4.31), the assumptions (4.21) and (4.22) imply (4.32) and 
(4.33), and the conclusions of Theorems 4.4 and 4.5 are valid. 

It follows from (4.37) that 

#( t )  = #M(a( t ) ) ,  Vt >~ t k 

Theorems 4.4 and 4.5 ensure (3.9) and (3.11), respectively. In order to 
apply Lemma 3.10, we check the property (3.10) of the function ,~k,l(t). 
Notice that Eq. (4.4) is equivalent to the equation 

(q~, flk, t ( t))  = (q~, ;~,t(tk)) 

x 2k, t(s, dza) 2k, l(s, dz2) ds (4.40) 
The function B(q0) is defined as 

B(~o)(zl ,  z2) = f~2 de g [ l q ( v l ,  v2, e)(1/2) 

x [q~(xl, v*) - ~0(xl, vl) + q)(x2, v*) - qKx2, v2)] (4.41) 

where we use the notation (1.3), and zi = (xi ,  vi), i =  1, 2. 
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The function B((0) defined in (4.41) is symmetric in their arguments. 
As a function of each of the arguments, it belongs to CL(ZI) if (0 does. 
Using the assumption (4.9), one easily checks that 

][B(~p)(., z2)[[ <~2gf-lQn~ax [](pl[, Vz2~Zt (4.42) 

and the property (3.10) follows. Hence, Lemma3.10 implies the first 
assertion of Theorem 4.3. 

The second assertion of Theorem 4.3 follows from the equation 

([z[ 2, # , ( t ) )  = {[z] 2, # , ( t k ) ) ,  Vt~> tk (4.43) 

and the assumption (4.22). The property (4.43) is a consequence of the 
energy conservation during the collision simulation. 

Thus, the proof is completed. | 

It remains to prove Theorems 4.4 and 4.5. 
To prepare the proof of Theorem 4.4, we consider a function F of the 

form 

F(z("))=n -1 ~ qo(zi), z(")eZ" (4.44) 
i = 1  

where ~0 is an arbitrary bounded measurable function on Z. Notice that 

F(zg(t)) = (q~, #M(t) ) (4.45) 

It follows from general properties of Markov processes (cf. Skorokhod, (22) 
p. 3, or Davis, (9) p. 26) that the process 

~'k ~/(F)(zg(s)) ds M(~p, t) = F(ZM(t)) -- F(zM(tk)) -- (4.46) 

is a martingale, and 

EM(qo, t ) 2 = E f  ' [ d ( r 2 ) - z r d ( F ) ] ( z M ( s ) ) d s  (4.47) 
:tk 

It follows directly from (4.30) that 

sr = n - 2 ~ f~ de [~o(xi, v* ) -  q)(xi, vi) + ~o(xj, v* ) - qo(xj, vfl] 
i < j  2 

• g;-l�82 �82 q(vi, vj, e) (4.48) 

From (4.44), (4.46), and (4.48), we obtain the estimate 

[M(q~, t)[ ~<2 [[(p][~ [1 +gl-lQmax(t- t~)]  (4.49) 
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Elementary but lengthy calculations show that 

[~r 2 ) - 2F.~C(F) ] (z ~")) 

= n -3 i~<, f~2de[(o(xi, v*)--(o(xi, vi)+(O(x,, v*)--(O(x,, vj)] 2 

• g 71�82 �82 q(v,, vj, e) (4.50) 

From (4.47) and (4.50), we obtain the estimate 

E[M((O, t)]2~<8 II(oll 2 gTiQmax(t-tk) n -~ (4.51) 

It follows from (4.45), (4.46), and (4.48), that 

((o, t,M(t)) = ((o, ~M(tO ) 

+ I)k fc, i~,I~,f# B((o )(z,, z2) 
• dz,)#m(s, dz2) ds+M((o,t) (4.52) 

for any bounded measurable function (O on Z, where we used the notation 
(4.41). 

Now we are ready to prove Theorem 4.4. The main ideas of the proof 
are due to Smirnov, {23) where a numerical procedure based on stochastic 
differential equations with respect to Poisson measures was shown to con- 
verge to the solution of the spatially homogeneous Boltzmann equation. 

Proof of Theorem 4.4. In the following calculations we will write 
#(t) and 2(0 instead of #M(t) and 2k, t(t), respectively. We also use simply 
the sign sup for the supremum over all t ~ [tk, T]. We consider a function 
(O ~ CL(ZI) and denote (o n = (OZR, where R is a positive real number and 
the function Zn is defined in (3.4). Furthermore, the functions on Zt are 
continued by zero to functions on Z, when Eq. (4.52) is used. Using (4.52) 
and (4.40), we obtain the following inequality: 

I<(o, #(t)- ,~(t) ) I 

~< [((OR,/*(t)-2(t))l  + [((O-(OR, # ( t ) - 2 ( t ) ) l  

~< II(oll (/4t)(lzl >. R) + 2(t)(Izl >JR))+ ((on, #(tk) ) + M((On, t) 

+ f[k fG, f~3 fG, f~, B( (o R)(zl' z2) ~(s' dzl) It(S' dz2) ds 

-- ((OR, 2( tk)  ) 

-- fttk fGI ~3 ~GI f~3 B((O R)(Zl' Z2) "~'(s' dZA) "~(s' dz2) ds 
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I1~11 (sup #(t)(Izl >~R)+supA(t)(lzl ~>n))+ sup IM(~pR, t)t 

+ I<~oR, it(tk)--2(tk)>l + f '  fG, f~fG, f~B(~oR)(Z~,Z2) 

X [p(S, dz~)It(s, dz2)-2(s, dz~)2(s, dz2)] ds (4.53) 

Notice that H~oR]I ~<2 ]l~oIi. Thus, we obtain, from (4.53) and (4.42), that 

pL(#(t), 2(t)) ~< sup It(t)(Izl/> R) + sup 2(t)(Izl >/R) + Sa 

+ 2 P L ( i t ( t k ) '  2 ( t k ) )  + 4 g ~ - ~ Q m ~ x  k PL(#(S)' 2 ( S ) )  ds 

where 
S, = sup sup IM(~PR, t)] (4.54) 

[Iq, II ~< 1 t 

Now the Gronwall lemma allows to conclude that 

sup pL(it(t), 2(t)) 

< exp[4g?lQrna• - tk)] 

• {sup ~(t)(Iz[ i> R) + sup 2(t)(lzl >/R) + S~ 

+ 2pL(#(tk), 2(tk)) } (4.55) 

First we estimate the expectation of the term $1 defined in (4.54). 
The set DR= {OR: q~CL(Z~), Hq~tl ~<1} is compact in the space of 

continuous functions on {z e Zt: [zl ~< R + 1 }. Consequently, for any e > 0, 
there exists a finite set of functions {~oi~ Cb} such that 

min lifo. ~pill~ ~<e, Vq~ ~DR 
i 

Thus, we obtain the estimate 

[M(q~R, t)[ ~< rain ]M(~oR -- ~oi, t)l + max ]M(~o i, t)[ 
i i 

~< sup IM(~O, t)l + ~  [M(q~, t)l 
IIq, ll~ < ~ i 

Consequently, it follows that 

ESl<<.Esup sup IM(~,t)l+~EsuplM(qb, t)[ (4.56) 
t II~011~ ~< ~ i t 
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Applying (4.49) to the first term, and the martingale inequality and (4.51) 
to the second term on the right-hand side of (4.56), we obtain 

ES1 <~ e. const + C(e) n - 1 / 2  

and 

Hence, 

lim sup ES1 <<, ~. const, Ve > 0 
n ~ o f )  

lim ES1 = 0, VR > 0 (4.57) 

We conclude from Chebychev's inequality and the energy conservation 
law governing the transformation (1.3) that 

#(t)(lzl>>.R)<<.R 2 ( I z l 2 , ~ ( t ) ) = R  2(Izl2,#(tk))  

Consequently, we obtain 

limsupEsup#(t)([zl>>.R)<~R-2supE(lzl2,1~(tk)) (4.58) 
n ~ o o  l n 

Thus, using (4.32), (4.57), and (4.58), we conclude from (4.55) that 

lim sup Esup  pL(#(t), 2(0) 
n ~  t 

~< const{R 2supE(lz[2,#(tk))+sup2(t)(lzl~>R)}, V R > 0  
n t 

The right-hand side of the last inequality tends to zero as R ~ oe because 
of the assumptions (4.33) and (4.5). Thus, the proof is completed. | 

To prepare the proof of Theorem 4.5, we introduce two auxiliary 
random time transformations. 

Let a M be the inverse transformation of a. Thus, a M is piecewise 
linear. Moreover, 

aM(t) = t, t ~> tk (4.59) 

in the case n~ < 2, and 

aM(vM(m)) = z(m), m = 0, 1,... (4.60) 

in the case nt~>2, according to (4.38), (4.39). 
Furthermore, let a M be the function defined as 

a0M(t) = t, t/> tk (4.61) 
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in the case nt < 2, and 

a~(t) = r(m) (4.62) 

for t s  [rM(m), rM(m+ 1)), m = 0 ,  1 ..... in the case nl~>2. 
Now we prove two assertions concerning the random time transforma- 

tions a M and a M. 

L e m m a  4.6. Suppose the assumptions of Theorem 4.5 to be 
fulfilled. Then, 

sup l a ~ ( t ) - t l ~ O  inprobability, VT>~tk 
t~ Irk, T]  

Proof. We consider the Markov process 

(zM(t), uM(t)), t>~ t~ (4.63) 

with the state space Z n | N. Let the infinitesimal generator of the extended 
process (4.63) have the following form, which is a slight modification of 
(4.30): 

~r (n), u)=n -1 ~ f~ de[F(z(") +~(i'J)(z(n), e), u+n-lQ(vi ,  v;) -1) 
i < j  2 

- F ( z  ("), u)] g,X�82 �82 q(vi, vj, e) (4.64) 

where F is an arbitrary bounded measurable function on Z n |  ~. The 
initial value of the additional component is 

uM(tk) = 0 (4.65) 

Thus, the component UM(t)jumps at the random moments rM(m), 
m = 1, 2,..., defined in (4.34). Because of the assumption (4.11), the maxi- 
mum value of the jumps is n-lQmiln . The mean number of jumps on a time 
interval [tk, T ]  increases when the parameter (4.35) of the waiting time 
distribution is replaced by the value ng~lQ . . . .  which does not depend on 
the current state. The number of jumps related to this waiting times has a 
Poisson distribution with the parameter ng[iQ~a,(T - tD. Consequently, 
the expectation of the component uM(T) can be estimated uniformly in n, 

EuM(T) <~ 1 - Qmin gl 1Qmax(T- tk) (4.66) 

According to (4.62), (4.65), (2.13), and (2.14), the transformation 
aM(t) is connected with the additional component uM(t) via the relation 

aoM(t) it = (tk + C~nuM(t)) it 
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where it denotes the indicator of the set {n~>~ 2}, and 

~ [ n - 2 ~ n l _ l ) ( n l / 2 ) g T i ]  1, if nt>~2 

c~" = (0, if n l < 2  

We consider the function 

q)R(u) = uzR(u), u �9 

where R > 0, and ZR is defined in (3.4). One easily shows that 

If~0RII ~<(R+ 1) 

1 - - 1  Let B1 denote the interval [0, R - n  Q~in] and B2= [0, ~ ) \B1 .  
Now we start the estimation of the term (aM( t ) -  t), which equals 

(aM(t) - t ) i t  because of (4.61). We obtain 

(aM(t) -- t) = [C~,~OR(uM(t)) -- (t -- tk)] it�82 

+ [~,~pn(uM(t)) -- ( t -  tk) ] it�82 

+ ~,uM(t)[1 --Ze(uM(t))]  i, (4.67) 

Applying the appropriate modification of the formula (4.46) to the process 
(4.63), the infinitesimal generator (4.64), and the function 

F(z ~"), u) = qo R(u) 

we obtain 

~ 't l q)n(uM(t)) = sr UM(S)) ds + M(t )  
k 

where the martingale M(t)  has the second moment [cf. (4.47)] 

EM(t )  2 = E [ d ( F  2) - 2Fd(F)] ( zM(s ) ,  uM(s)) ds 
k 

If u �9 B1, then 

d r ( z  ("), u) = F1-1 i~< i fN2 de[ q) n(U + n 1Q(vi, vj) 1)_  On(u)] 

• gTl�82 �82 q(vi, Vj, e) 

= n - 2 ( n t _  1)(nz/2) g/1 

Wagner 
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Notice that the function uM(t) is increasing in t. Consequently, the first 
term on the right-hand side of (4.67) takes the form 

~Ot,AOR(uM(t)) -- ( t -  tk) ] iI�82 

{ I;; ] } = en k n - 2 ( n t - 1 ) ( n l / 2 ) g ? X d s + M ( t ) - ( t - t k )  6�82 

= ~.M(t)it�82 

Thus, we conclude from (4.67) that 

sup lo~t(t) - tj ~< con sup !M(t)l + [-cr + 1) + ( r -  tk)] �82 
t t 

+ O:nUM(T) �82 ov)(uM(T)) (4.68) 

One finds, in analogy with (4.50), 

( d F  2 - 2 F d F ) ( z  ("), u) 

= n  1~ .  ~ de[~pR(u+n 1Q(vi, 1)j)1)--(PR(U)]2 
i < j ' ~ 2  

x gt-l�82 �82 q(vi, Vj, e) <~ (R + 1) 2 n-~Q~i~gt  1 

Consequently, 

EM(T)2<<(R+I)2 -1 - -1  1 t7 Qmingl ( T -  tg) 

and it follows from the martingale inequality that 

sup [M(t)] , ~  , 0 in probability, V R > 0  (4.69) 
t 

We conclude from the assumptions (4.32) and (4.7) and 
Corollary 3.5(iii) that 

nt/n =/zy(t~)(Gt|  ~3) ~ 2k, z(tk)(G/| ~3) in probability 

Because of assumption (4.6), we obtain that 

an ~ (2g,)[)ok(tk)(G,| ~3)] - - 2  > 0 (4.70) 

in probability. 
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Finally, we conclude from (4.68) that 

Prob{sup [a~(t) - t[ > ~} 
t 

~<Prob{~. sup IM(t)l > e/3} 
t 

+ Prob{ [c~,(R + 1) + ( T -  tk)] �82 > e/3} 

+ Prob{~,uM(T) �82 oo)(UM(T)) > ~/3} 

1 - -1  ~< Prob{e, s u p l M ( t ) l > e / 3 } + P r o b { u M ( T ) > R - n  Qmi.} 
t 

+ Prob{uM(T) > R} 

Using Chebychev's inequality, (4.66), (4.69), and (4.70), we obtain 

- - 1  1 lim sup Prob{sup ]aY(t)- t l  >e} ~<2R QminQm~gy1(T-tk)  
n ~ o o  t 

e>0. Consequently, the assertion of the lemma for any R > 0  and 
follows. | 

I .emma 4.7. Suppose the assumptions of Theorem 4.5 to be 
fulfilled. Then 

sup laM(t)-- t[ ~ 0  in probability, VT~  t k 
t e [ tk ,  T ]  

Proof. If nt< 2, then 

sup laM(t)--tl =0  
t e  I t  k, T ]  

according to (4.59). We suppose in the following that n~>~ 2. 
Consider the set 

A~={ sup laM(t)--tl>~}, e > 0  
t e [ tk ,  T]  

and let mr  be such that 

Te [zm(mr), zM(mr+ 1)) 

It follows from the piecewise linearity of a M that 

sup 
te Irk, T] 

laM(t)--tl~ sup laM(vM(m))--vM(m)[ 
m < ~ r n T +  l 
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Consequently, we obtain 

Prob(A~) ~< Prob( sup laM(vi(m)) -- v/(m)l  > e) + Prob(B,) 
rn <~ m T 

where 

Since 

B~ = { I~rM(vM(mT + 1 ) ) -  zM(mT + 1)l > e} 

crM(ri(m) ) = ~r~(~i(m) ) 

according to (4.60), (4.62), it follows that 

Prob(A,)~<Prob( sup tcr6u(t)-tl >5) 
t~ Irk, T ]  

+ Prob(B, ~ { z / ( m z +  1)~< T + 6 } )  

+ P r o b ( B ~  { z i ( m r +  1)> T + 6 } )  

for any 6 > O. 
The function a ~  is piecewise constant. Thus, if 

r / ( m r +  1)> T + 6  

then 
sup Icr~(t) - tl/> 0/2 

t ~ [ T , T + 6 ]  

Consequently, 

Prob(A~)~<2 Prob( sup 
t ~  [ tk ,  T + 6 ]  

+ Prob( sup 

la~(t)  - tl > 5) 

laM(t) -- tl ~> 6/2) 
t E  Etk, T + 6 ]  

The right-hand side of the last inequality tends to zero, for arbitrary 5 and 
6, because of Lemma 4.6. This completes the proof. | 

Theorem 4.5 is now an immediate consequence of Lemma 4.7. 

Proof  o f  Theorem 4.5. Since a M is increasing and aM= (7 " -1 ,  w e  

obtain 

Prob(la(t) - tl > 5) = Prob(cr(t) < t - 5) + Prob(a(t) > t + e) 

= Prob(t < a i ( t  -- 5)) + Prob(t > r + 5)) 

for any 5 > 0 and t/> tk. The right-hand side of this inequality tends to zero 
according to Lemma4.7. | 

822/'66/3-4-23 
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5. C O M M E N T S  A N D  O U T L O O K  

The considerations of the present paper have been restricted to the 
limiting behavior of the Bird algorithm when the number of particles tends 
to infinity. In this final section, we will give some comments concerning the 
results, and mention some related problems that have not been considered. 

First of all, some remarks about the relationship between the limit 
P(t) of the Bird algorithm and the solution of the Boltzmann equation are 
necessary. We sketch the derivation (at least on a heuristic level) of the 
system of equations (4.2)-(4.4) from the Boltzmann equation (1.1)-(1.4). 

First, one introduces a mollifying kernel 

[c 
h(x, y)= ~ g?t�82 �82 (5.1) 

l = 1  

and replaces the right-hand side of Eq. (1.1) by 

Jmol(f)(t, x, v)= fcdY fR3dw f~2de h(x, y) q(v, w, e) 

x If(t, x, v*)f(t, y, w*)--f(t, x, v)f(t, y, w)] (5.2) 

Then, one introduces a time discretization 

(tk), k = O, 1 .... 

and performs the splitting of the free flow term and the collision term on 
each time interval 

[tk, tg+l], k=O, 1,... 

After a transformation of the equations with respect to densities into equa- 
tions with respect to measures, one arrives at the system of equations 

d 
{f  de h(x, y)q(v, w, e) dS~(tg ' l~k( t )~;GfR3;G;[~3 ~2 

x [~p(x, v*)-  ~o(x, v)]} ilk(t, dx, dr) ilk(t, dy, dw) (5.3) 

t~ [tk, tk+l],  k=O,  1,... 

~k(tk) ~- "~k l ( / k )  * ~ A t  1 , k = 1, 2 .... (5.4) 

,~O(tO) ~--- po~l~[Jfft 1 
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where the measure Po has the density f0 appearing in (1.4), and h is defined 
in (5.1). Obviously, the measure-valued functions defined in (4.2)--(4.4) 
satisfy the system (5.3), (5.4). 

The approximation error depends on the time discretization (tk) and 
on the division of the space into cells (Gl), which influences the mollified 
collision term (5.2). The behavior of the solutions of the system (5.3), (5.4) 
should be investigated when At--* 0 and Ax ~ O, where Ax denotes the 
maximum diameter of the cells Gl, l = 1 ..... lc. This problem can be tackled 
similarly to what is done in Babovsky and Illner, (3) where the Nanbu 
algorithm is treated. 

Second, we give some comments on the assumptions of Theorem 4.1. 
The assumption concerning the existence of the limiting measures 2 k 

probably could be removed by using the strong properties of q and 
standard techniques. (~'13) The essential assumptions concerning 2k are (4.6) 
and (4.7), which seem to be rather reasonable. Indeed, the Bird algorithm 
will not work well if the measure to be approximated has a positive mass 
on the boundary of some cell. Also, undesirable effects may appear if some 
cell has the mass zero. Assumption (4.7) is fulfilled if the measures 2~ are 
absolutely continuous, and the transformation r preserves this property. 

The assumptions (4.9)-(4.11) concerning the collision kernel q are not 
fulfilled for realistic q. However, in many cases of practical importance, 
these assumptions are satisfied for the function 

q(r'R)(V, w,e)-={Rr 

q(v, w, e) 

if q(v,w,e)>~R 
if q(v, w, e) <~ r 
otherwise 

0 < r < R < oo. The behavior of the truncation error resulting from such an 
approximation should be analyzed when R ~ oo and r--* 0 (cf. Arsen'ev (a) 
for the case R ~ oo). 

The assumptions concerning the initial value v(')(to) of the Bird 
algorithm imply that 

< Izl a, P0> < oo (55) 

according to Lemma 3.9. If one supposes (5.5), then the assumptions (4.12) 
and (4.13) are fulfilled for the initial measure v(n)(to) generated by 
independent samples of the probability measure Po. However, the initial 
measure v(')(to) can also be deterministic. 

It seems to be worth mentioning that no assumption concerning an 
"initial chaos" is needed. What we have shown is "propagation of the con- 
vergence of the empirical measures." The usual chaos property follows from 
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the convergence of the empirical measures under an appropriate symmetry 
assumption concerning the distribution function of the particle system. This 
fact has already been mentioned in the literature. (24) 

In finishing this paper, we give an example illustrating further applica- 
tions of the concept of embedding the discrete Bird algorithm into the 
framework of Markov processes. 

Suppose that the collision kernel q satisfies the condition 

q(v, w, e) <~ H(e), Vv, w ~ ~3 e e ~2 (5.6) 

where ~2H(e) de< oe. Under the assumption (5.6), the infinitesimal 
generator (4.30) can be transformed into the form 

1 

~F(z(')) = n-1 E ae fo dq[F(z(') + ~h'iJ)(z('" e' q)) 
i < j  

- F(z('))] gyl�82 �82 H(e) (5.7) 

with 

~t(i,j)(z(.), e, q)= {~O (i'j)(z(n), e) if q < q(v. vj, e)/H(e) 
(5.8) 

otherwise 

The form (5.7), (5.8) of the generator suggests the following descrip- 
tion of the Markov process, which is different from (4.34)-(4.36). 

Given the state ((xi, vi), i=  1,..., n), the process waits a random time 
which is exponentially distributed with the parameter 

n-1 E �82 �82 g, ~ f5 H(e) de 
i < j  2 

= n ~(n t -  1)(nj2) gll f52 H(e) de (5.9) 

instead of (4.35). After that time, the process jumps in the following way. 
First, the indices i and j of the particles due to take part in a collision 

are generated according to the probabilities 

const. �82 �82 

[instead of (2.10)], i.e., uniformly in the cell Gt. 
Then, an element e eN 2 is generated in correspondence with the 

probability density 

const. H(e) 
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[-instead of (2.12)], and a random number t/is sampled from the uniform 
distribution on the interval [0, 1]. 

Finally, if 

rl < q(vi, vj, e)/g(e) (5.10) 

the new state is obtained from the old one by replacing vi and vj by v* and 
v*, respectively, which are calculated according to (1.3). If (5.10) is not 
fulfilled, then no change takes place in the system, and the collision is 
called fictitious. 

The relationship between the time counter (2.13) and the parameters 
(4.35) suggests the modified time counter 

Az/(rn)= n-l(nt--1)(nt/2) g~l H(e) de (5.11) 

which is analogously related to the parameters (5.9). We call the algorithm 
based on the time counter (5.11) the "modified Bird algorithm with 
fictitious collisions." 

The modified time counter (5.11) counts the fictitious collisions, too. 
Moreover, it is deterministic, so that the number of (possibly fictitious) 
collisions in a cell can be calculated at the beginning of the collision 
simulation step. The convergence of the modified Bird algorithm can be 
proved in a completely analogous way, even without the assumption (4.11). 

It should be mentioned that the modified Bird process in a cell is 
just the same as that obtained by Lukshin and Smirnov (19) in the spatially 
homogeneous case for the algorithm based on stochastic differential equa- 
tions, where the Poisson distribution for the number of jumps on a time 
interval has been replaced by its mathematical expectation. The complete 
algorithm using the modified Bird process in the cells is very similar to the 
so-called null-collision technique introduced by Koura. (17) 

The concept based on Markov processes seems to be very useful for a 
unification and even a deeper understanding of various stochastic particle 
simulation procedures for the Boltzmann equation. It can also be employed 
for developing new algorithms. 
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